A limit relation for entropy and channel capacity per unit cost
نویسندگان
چکیده
In a quantum mechanical model, Diósi, Feldmann and Kosloff arrived at a conjecture stating that the limit of the entropy of certain mixtures is the relative entropy as system size goes to infinity. The conjecture is proven in this paper for density matrices. The first proof is analytic and uses the quantum law of large numbers. The second one clarifies the relation to channel capacity per unit cost for classical-quantum channels. Both proofs lead to generalizations of the conjecture.
منابع مشابه
Quantum Channel Capacities Per Unit Cost
Communication over a noisy channel is often conducted in a setting in which different input symbols to the channel incur a certain cost. For example, for the additive white Gaussian noise channel, the cost associated with a real number input symbol is the square of its magnitude. In such a setting, it is often useful to know the maximum amount of information that can be reliably transmitted per...
متن کاملThe 1-vertex transfer matrix and accurate estimation of channel capacity
The notion of a 1-vertex transfer matrix for multidimensional codes. It is shown that the capacity of such codes, or the topological entropy, can be expressed as the limit of the logarithm of spectral radii of 1-vertex transfer matrices. Storage and computations using the 1-vertex transfer matrix are much smaller than storage and computations needed for the standard transfer matrix. The method ...
متن کاملOn Capacity and Capacity per Unit Cost of Gaussian Multiple Access Channel with Peak Power Constraints
This paper investigates the capacity and capacity per unit cost of Gaussian multiple-access channel (GMAC) with peak power constraints. We first devise an approach based on Blahut-Arimoto Algorithm to numerically optimize the sum rate and quantify the corresponding input distributions. The results reveal that in the case with identical peak power constraints, the user with higher SNR is to have...
متن کاملThe Rate of Entropy for Gaussian Processes
In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...
متن کاملEntanglement-assisted capacity of a quantum channel and the reverse Shannon theorem
The entanglement-assisted classical capacity of a noisy quantum channel (CE) is the amount of information per channel use that can be sent over the channel in the limit of many uses of the channel, assuming that the sender and receiver have access to the resource of shared quantum entanglement, which may be used up by the communication protocol. We show that the capacity CE is given by an expre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0704.0046 شماره
صفحات -
تاریخ انتشار 2007